
Conrete Model Cheking with AbstratMathing and Re�nementCorina S. P�as�areanu1, Radek Pel�anek?2, and Willem Visser31 Kestrel Tehnology/QSS, NASA Ames, Mo�ett Field, CA 94035, USA2 Masaryk University Brno, Czeh Republi3 RIACS/USRA, NASA Ames, Mo�ett Field, CA 94035, USAAbstrat. We propose an abstration-based model heking methodwhih relies on re�nement of an under-approximation of the feasible be-haviors of the system under analysis. The method preserves errors tosafety properties, sine all analyzed behaviors are feasible by de�nition.The method does not require an abstrat transition relation to be gener-ated, but instead exeutes the onrete transitions while storing abstratversions of the onrete states, as spei�ed by a set of abstration pred-iates. For eah explored transition the method heks, with the help ofa theorem prover, whether there is any loss of preision introdued byabstration. The results of these heks are used to deide terminationor to re�ne the abstration by generating new abstration prediates. Ifthe (possibly in�nite) onrete system under analysis has a �nite bisim-ulation quotient, then the method is guaranteed to eventually explorean equivalent �nite bisimilar struture. We illustrate the appliation ofthe approah for heking onurrent programs. We also show how alightweight variant an be used for eÆient software testing.1 IntrodutionOver the last few years, model heking based on abstration-re�nement hasbeome a popular tehnique for the analysis of software. In partiular the ab-stration tehnique of hoie is a property preserving over-approximation alledprediate abstration [13℄ and the re�nement removes spurious behavior basedon automatially analyzing abstrat ounter-examples. This approah is often re-ferred to as CEGAR (ounter-example guided automated re�nement) and formsthe basis of some of the most popular software model hekers [2, 3, 17℄. Fur-thermore, a strength of model heking is its ability to automate the detetionof subtle errors and to produe traes that exhibit those errors. However, over-approximation based abstration tehniques are not partiularly well suited forthis, sine the deteted defets may be spurious due to the over-approximation| hene the need for re�nement. We propose an alternative approah basedon re�nement of under-approximations, whih e�etively preserves the defetdetetion ability of model heking in the presene of aggressive abstrations.? Partially supported by the Grant Ageny of Czeh Republi grant No. 201/03/0509and by the Aademy of Sienes of Czeh Republi grant No. 1ET408050503.



The tehnique uses a novel ombination of (expliit state) model heking,prediate abstration and automated re�nement to eÆiently analyze inreas-ing portions of the feasible behavior of a system. At eah step, either an erroris found, we are guaranteed no error exists, or the abstration is re�ned. Morepreisely, the proposed model heking tehnique traverses the onrete transi-tions of the system and for eah explored onrete state, it stores an abstratversion of the state. The abstrat state, omputed by prediate abstration, isused to determine whether the model heker's searh should ontinue or bak-trak (if the abstrat state has been visited before). This e�etively explores anunder-approximation of the feasible behavior of the analyzed system. Hene allounter-examples to safety properties are preserved.Re�nement uses weakest preondition alulations to hek, with the helpof a theorem prover, whether the abstration introdues any loss of preisionwith respet to eah explored transition. If there is no loss of preision dueto abstration (we say that the abstration is exat) the searh stops and weonlude that the property holds. Otherwise, the results from the failed heksare used to re�ne the abstration and the whole veri�ation proess is repeatedanew. In general, the iterative re�nement may not terminate. However, if a �nitebisimulation quotient [19℄ exists for the system under analysis, then the proposedapproah is guaranteed to eventually explore a �nite struture that is bisimilarto the original system.The tehnique an also be used in a lightweight manner, without a theoremprover, i.e. the re�nement guided by the exatness heks is replaed with re�ne-ment based on syntati substitutions [21℄ or heuristi re�nement. The proposedtehnique an be used for systemati testing, as it examines inreasing portionsof the system under analysis. In fat, our method extends existing approahes totesting that use abstration mappings [14, 28℄, by adding support for automatedabstration re�nement.To the best of our knowledge, the presented approah is the �rst prediateabstration based analysis whih fouses on automated re�nement of under-approximations with the goal of eÆient error detetion. We illustrate the ap-pliation of the approah for heking safety properties in onurrent programsand for testing ontainer implementations.Comparison with Related Work The most losely related work to ours isthat of Grumberg et al. [15℄ where a re�nement of an under-approximation isused to improve analysis of multi-proess systems. The proedure in [15℄ heksmodels with an inreasing set of allowed interleavings of the given proesses,starting from a single interleaving. It uses SAT-based bounded model hekingfor analysis and re�nement, whereas here we fous on expliit model hekingand prediate abstration, and we use weakest preondition alulations for ab-stration re�nement.Our approah an be ontrasted with the work on prediate abstrationfor modal transition systems [12, 24℄, used in the veri�ation and refutation ofbranhing time temporal logi properties. An abstrat model for suh logis dis-tinguishes between may transitions, whih over-approximate transitions of the2



onrete model, and must transitions, whih under-approximate the onretetransitions (see also [1, 6, 7℄). The method presented here explores and generatesa struture whih is more preise (ontains more feasible behaviors) than themodel de�ned by the must transitions, for the same abstration prediates. Thereason is that the model heker explores transitions that orrespond not onlyto must transitions, but also to may transitions that are feasible (see Setion 2).Moreover, unlike [12, 24℄ and over-approximation based abstration teh-niques [2, 3℄, the under-approximation and re�nement approah does not requirethe a priori onstrution of the abstrat transition relation, whih involves expo-nentially many theorem prover alls (in the number of prediates), regardless ofthe size of (the reahable portion of) the analyzed system. In our ase, the modelheker exeutes onrete transitions and a theorem prover is only used duringre�nement, to determine whether the abstration is exat with respet to eahexeuted transition. Every suh alulation makes at most two theorem proveralls, and it involves only the reahable state spae of the system under analysis.Another di�erene with previous abstration tehniques is that the re�nementproess is not guided by the spurious ounter-examples, sine no spurious behav-ior is explored. Instead, the re�nement is guided by the failed exatness heksfor the explored transitions.In previous work [22℄, we developed a tehnique for �nding guaranteed feasi-ble ounter-examples in abstrated programs. The tehnique essentially exploresan under-approximation de�ned by the must abstrat transitions (although thepresentation is not formalized in these terms). The work presented here exploresan under-approximation whih is more preise than the abstrat system de�nedby the must transitions. Hene it has a better hane of �nding bugs while en-abling more aggressive abstration and therefore more state spae redution.Model-driven software veri�ation [18℄ advoates the use of abstration map-pings during onrete model heking in a way similar to what we present here.The CMC model heking tool [20℄ also attempts to store state information inmemory using aggressive ompressing tehniques (whih an be seen as a formof abstration), while the detailed state information is kept on the stak. Thesetehniques allow the detetion of subtle bugs whih an not be disovered bylassial model heking, using e.g. breadth �rst searh. or by state-less modelheking [11℄. While these tehniques use abstrations in an ad-ho manner, ourwork ontributes the automated generation and re�nement of abstrations.Dataow and type-based analyzes have been used to hek safety prop-erties of software (e.g. [25℄). Unlike our work, these tehniques analyze over-approximations of system behavior and may generate false positive results dueto infeasible paths.Layout The rest of the paper is organized as follows. Setion 2 shows an exam-ple illustrating our approah. Setion 3 gives bakground information. Setion 4desribes the main algorithm for performing onrete model heking with ab-strat mathing and re�nement. Setion 5 disusses orretness and terminationfor the algorithm. Setion 6 proposes extensions to the main algorithm. Setion 7illustrates appliations of the approah and Setion 8 onludes the paper.3
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(a) (e)(b) (c) (d)Fig. 1. (a) Conrete system (b) May abstration using prediate p = x < 2 () Mustabstration using p (d) Conrete searh with abstrat mathing using p (e) Conretesearh with abstrat mathing using prediates p and q = x < 1.2 ExampleThe example in Fig. 1 illustrates some of the main harateristis of our ap-proah. Fig. 1 (a) shows the state spae of a onrete system that has only onevariable x; states are labelled with the program ounter (e.g. A, B, C ...) andthe onrete value of x. Fig. 1 (b) shows the abstrat system indued by themay transitions for prediate p = x < 2. Fig. 1 () shows the abstrat systemindued by the must transitions for prediate p.Fig. 1 (d) shows the state spae explored using our proposed approah, foran abstration spei�ed by prediate p. Dotted irles denote the abstrat stateswhih are stored, and used for mathing, during the onrete exeution of thesystem. The approah explores only the feasible behavior of the onrete system,following transitions that orrespond to both may and must transitions, but itmight miss behavior due to abstrat mathing. For example, state (E; 1) is notexplored, assuming a breadth-�rst searh, sine (D; 0) was mathed with (D; 1) -both have the same program ounter and both satisfy p. Notie that, with respetto reahable states, the produed struture is a better under-approximation thanthe must abstration. Fig. 1 (e) illustrates onrete exeution with abstratmathing, after a re�nement step, whih introdued a new prediate q = x < 1.The resulting struture is an exat abstration of the onrete system.3 BakgroundProgramModel To make the presentation simple, we use as a spei�ation lan-guage a guarded ommands language over integer variables. Most of the resultsextend diretly to more sophistiated programming languages. Let V be a �niteset of integer variables. Expressions over V are de�ned using standard boolean(=; <;>) and binary (+;�; �; :::) operations. A model is a tuple M = (V; T ).T = ft1; : : : ; tkg is a �nite set of transitions, where ti = (gi(x) 7�! x := ei(x)).gi(x) is a guard and ei(x) are assignments to the variables represented by tuplex; throughout the paper, we write this as a sequene of assignments.4



Semantis As a semantis of a model we use transition systems. A transitionsystem over a �nite set of atomi propositions AP is a tuple (S;R; s0; L) whereS is a (possibly in�nite) set of states, R = f i�!g is a �nite set of deterministitransition relations: i�!� S � S, s0 is an initial state, and L : S ! 2AP is alabelling funtion. State s is reahable if it is reahable from the initial statevia zero or more transitions, i.e. s0 !� s. The set of reahable labellings RL isfL(s) j 9s 2 S : s0 !� sg. The onrete semantis of model M is the transitionsystem C(M) = (S; f i�!g; s0; L) over AP , where:{ S = 2V!Z, i.e. states are valuations of variables,{ s i�! s0 , s j= gi^s0 = ui(s); the semantis of guards (boolean expressions)and updates is as usual; guards are funtions (V ! Z) ! ftrue; falseg,written as s j= gi; updates are funtions ui : (V ! Z)! (V ! Z),{ s0 is the zero valuation (8v 2 V : s0(v) = 0),{ L(s) = fp 2 AP j s j= pg.Weakest preondition The weakest preondition of a set of states X withrespet to transition i is wp(X; i) = fs j s i�! s0 ) s0 2 Xg. If the set of statesX is haraterized by a prediate �, then the weakest preondition with respetto transition i an be expressed as wp(�; i) = (gi ) �[ei(x)=x℄).Prediate abstration Prediate abstration is a speial instane of the frame-work of abstrat interpretation [5℄ that maps a (potentially in�nite state) tran-sition system into a �nite state transition system via a set of prediates � =f�1; : : : ; �ng over the program variables. Let Bn be a set of bitvetors of length n.We de�ne abstration funtion �� : S ! Bn , suh that ��(s) is a bitvetorb1b2 : : : bn suh that bi = 1, s j= �i. Let �s be the set of all abstration predi-ates that evaluate to true for a given state s, i.e. �s = f� 2 � j s j= �g. For su-intness we sometimes write ��(s) (or just �(s)) to denote V�2�s �^V�=2�s :�.We also give here the de�nitions of may and must abstrat transitions. Al-though not neessary for formalizing our algorithm, these de�nitions larify theomparison with related work. For two abstrat states (bitvetors) a1 and a2:{ �!must: a1 i�!must a2 i� for all onrete states s1 suh that �(s1) = a1,there exists onrete state s2 suh that �(s2) = a2 and s1 i�! s2,{ �!may: a1 i�!may a2 i� there exists onrete state s1 suh that �(s1) = a1and there exists onrete state s2 suh that �(s2) = a2, suh that s1 i�! s2.Algorithms for omputing abstrations using over-approximation based pred-iate abstration are given in e.g. [2, 13℄ (they ompute may abstrat transitionsautomatially, with the help of a theorem prover). In the worst ase, these algo-rithms make 2n�n� 2 alls to the theorem prover for eah program transition.Note that our approah does not require the omputation of abstrat transitions,sine it exeutes the onrete transitions diretly.5



Bisimulation A symmetri relation R � S�S is a bisimulation relation i� forall (s; s0) 2 R:{ L(s) = L(s0){ For every s0 i�! s01 there exists s i�! s1 suh that R(s1; s01)The bisimulation is the largest bisimulation relation, denoted �. Two tran-sition systems are bisimilar if their initial states are bisimilar. As � is an equiv-alene relation, it indues a quotient transition system whose states are equiva-lene lasses with respet to � and there is a transition between two equivalenelasses A and B if 9s1 2 A and 9s2 2 B suh that s1 i�! s2.4 Conrete Model Cheking with Abstrat MathingAlgorithm Fig. 2 shows the reahability proedure that performs model hek-ing with abstrat mathing (�Searh). It is basially onrete state spae ex-ploration with mathing on abstrat states; the main modi�ation with respetto lassial state spae searh is that we store �(s) instead of s. The proedureuses the following data strutures:{ States is a set of abstrat states visited so far,{ Transitions is a set of abstrat transitions visited so far,{ Wait is a set of onrete states to be explored.The proedure performs validity heking, using a theorem prover, to deter-mine whether the abstration is exat with respet to eah explored transition |see disussion below. The set �new maintains the list of abstration prediates.The proedure returns the omputed struture and a set of new prediates thatare used for re�nement.Fig. 3 gives the iterative re�nement algorithm for heking whether M anreah an error state desribed by '. At eah iteration of the loop, the algorithminvokes proedure �Searh to analyze an under-approximation of the system,whih either violates the property, it is proved to be orret (if the abstrationis found to be exat with respet to all transitions), or it needs to be re�ned.Counter-examples are generated as usual (with depth-�rst searh order usingthe stak, with breadth-�rst searh order using parent pointers).Cheking for Exat Abstration and Re�nement We say that an abstra-tion funtion � is exat with respet to transition s i�! s0 i� for all s1 suh that�(s) = �(s1) there exists s01 suh that �(s01) = �(s0) and s1 i�! s01. In otherwords, � is exat with respet to s i�! s0 i� �(s) i�!must �(s0). This de�ni-tion is also related to the notion of ompleteness in abstrat interpretation (seee.g. [10℄), whih states that no loss of preision is introdued by the abstration.Cheking that the abstration is exat with respet to onrete transitions i�! s0 is equivalent to heking that ��(s) ) wp(��(s0); i) is valid. This6



pro �Searh(M;�)�new = �; add s0 to Wait; add ��(s0) to Stateswhile Wait 6= ; doget s from WaitL(��(s)) = fa 2 AP j s j= agforeah i from 1 to n doif s j= gi then if ��(s)) gi is not validthen add gi to �new �s0 = ui(s)if ��(s)) ��(s0)[ei(x)=x℄ is not validthen add prediates in ��(s0)[ei(x)=x℄ to �new �if ��(s0) 62 States then add s0 to Waitadd ��(s0) to States�add (��(s); i; ��(s0)) to Transitionselse if ��(s)) :gi is not validthen add gi to �new ��ododA = (States;Transitions; ��(s0); L)return (A;�new)end Fig. 2. Searh proedure with heking for exat abstrationformula is equivalent to ��(s) ) ��(s0)[ei(x)=x℄ when s j= gi. Cheking thevalidity for these formulas is in general undeidable. As is ustomary, if thetheorem prover an not deide the validity of a formula, we assume that it is notvalid. This may ause some unneessary re�nement, but it keeps the orretnessof the approah. If the abstration an not be proved to be exat with respetto some transition, then the new prediates from the failed formula are added tothe set of abstration prediates. Intuitively, these prediates will be useful forproving exatness in the next iteration.5 Corretness and TerminationIn this setion we disuss the properties of the re�nement algorithm. We stateonly the main theorems, tehnial lemmas and proofs are given in [23℄ (due tospae limitations). First, we show that the set RL(�Searh(M;�)) of reahablelabellings omputed by the algorithm RefinementSearh is a subset of thereahable labellings of the system under analysis. Note that sometimes we let�Searh(M;�) denote just the struture A omputed by the algorithm and notthe tuple (A;�new). 7



pro RefinementSearh(M;')i = 1; �i = ;while true do(Ai; �i+1) = �Searh(M;�i)if ' is reahable in Ai then return ounter-example �if �i+1 = �i then return unreahable �i = i+ 1odend Fig. 3. Iterative re�nement algorithmTheorem 1. Let AP � �. Then RL(�Searh(M;�)) � RL(C(M)).Moreover, it holds that RL(�Searh(M;�)) is a superset of the reahablelabellings in the must abstration (see Lemma 1 in [23℄), hene it is (potentially)a better approximation.We now show that, if the iterative algorithm terminates then the result isorret and moreover, if the error state is unreahable, the output struture isbisimilar to the system under analysis:Theorem 2. If RefinementSearh(M;') terminates then:{ If it returns a ounter-example, then it is a real error.{ If it returns 'unreahable', then the error state is indeed unreahable in Mand moreover the omputed struture is bisimilar to C(M).In general, the proposed algorithm might not terminate (beause of the halt-ing problem). However, the algorithm is guaranteed to eventually �nd all thereahable labellings of the onrete program, although it might not be able todetet that (to deide termination). Moreover, if the (reahable part of the) sys-tem under analysis has a �nite bisimulation quotient, then the algorithm willeventually produe a �nite bisimilar struture.Theorem 3. Let the �Searh use breadth-�rst searh order and let A1, A2 ...be a sequene of transition systems generated during iterative re�nement per-formed by RefinementSearh(M;'). Then{ There exits i suh that RL(Ai) = RL(C(M)).{ If the reahable part of the bisimulation quotient is �nite, then there exists isuh that Ai � C(M).The basi idea of the proof is that any two states that are in di�erent bisimu-lation lasses (s 6� s0) will eventually be distinguished by the abstration funtion(��i(s) 6= ��i(s0)). Moreover, eah bisimulation lass will eventually be visitedby RefinementSearh and the (�nite set) of reahable labellings will emerge.8



Disussion The searh order used in �Searh (depth-�rst or breadth-�rst)inuenes the size of the generated struture, the newly omputed prediates,and even the number of iterations of the main algorithm. If there are two statess1 and s2 suh that ��(s1) = ��(s2) but s1 6� s2 then, depending on whethers1 or s2 is visited �rst, di�erent parts of the transition system will be explored.Also note that the re�nement algorithm is non-monotone, i.e. a labellingwhih is reahable in one iteration may not be reahable in the next iteration.A similar problem ours in the ontext of must abstrations: the set of musttransitions is not generally monotonially inreasing when prediates are addedto re�ne an abstrat system [12, 24℄. However, we should note that the algorithmis guaranteed to onverge to the orret answer.We should also note that the proposed iterative algorithm is not guaranteedto terminate even for a �nite state program. This situation is illustrated by thefollowing example (the property we are heking is that p = 2 is unreahable).p = 0 7�! x := 0; y := 0; p := 1p = 1 ^ y � 0 7�! y := y + xp = 1 ^ y < 0 7�! p := 2Although the program is �nite state (and therefore the problem an be easilysolved with lassial expliit model heking), it is quite diÆult to solve usingabstration re�nement tehniques. The iterative algorithm will not terminate onthis example: it will keep adding prediates y � 0; y+x � 0; y+2x � 0; : : :. Notethat, in aordane with Theorem 3, it will eventually produe a bisimilar stru-ture. However, the algorithm will not be able to detet termination, and it willkeep re�ning inde�nitely. The reason is that the algorithm keeps adding pred-iates that re�ne the unreahable part of the system under analysis. Also notethat the same problem will our with over-approximation based abstrationtehniques that use re�nement based on weakest preondition alulations [3,21℄. Those tehniques will introdue the same prediates.To solve this problem, we propose to use the following heuristi. If there isa transition for whih we annot prove that the abstration is exat in severalsubsequent iterations of the algorithm, then we add prediates desribing theonrete state; i.e. in our example we would add prediates x = 0; y = 0. Theabstration will eventually beome exat with respet to eah transition. Andsine the number of reahable transitions is �nite, the algorithm must terminate.Corollary 1. If C(M) is �nite state then the modi�ed algorithm terminates.6 ExtensionsLightweight Approah As mentioned, the under-approximation and re�ne-ment approah an be used in a lightweight but systemati manner, withoutusing a theorem prover for validity heking. Spei�ally, for eah explored tran-sition ti re�nement adds the new prediates from ��(s0)[ei(x)=x℄, regardless ofthe fat that the abstration is exat with respet to transition ti. This approah9



may result in unneessary re�nement. A similar re�nement proedure was usedin [21℄ for automated over-approximation prediate abstration.We are also onsidering several heuristis for generating new abstrationprediates. For example, it is ustomary to add the prediates that appear inthe guards and in the property to be heked. One ould also add prediatesgenerated dynamially, using tools like Daikon [9℄, or prediates from knowninvariants of the system (generated using stati analysis tehniques).In order to extend the appliability of the proposed tehnique to the analysisof full-edged programming languages, we are investigating abstrations thatreord information about the shape of the program heap, to be used in onjun-tion with the abstration prediates. Setion 7 shows an example use of suhabstrations for the analysis of Java programs.Transition Dependent Prediates The prediates that are generated afterthe validity hek for one transition are used `globally' at the next iteration. Thismay ause unneessary re�nement | the new prediates may distinguish stateswhih do not need to be distinguished. To avoid this, we ould use `transitiondependent' prediates. The idea is to assoiate the abstration prediates withthe program ounter orresponding to the transition that generated them. Newprediates are then added only to the set of the respetive program ounter.However, with this approah, it may take longer before prediates are `propa-gated' to all the loations where they are needed, i.e. more iterations are neededbefore an error is deteted or an exat abstration is found. We need to furtherinvestigate these issues. Similar ideas are presented in [4, 16℄, in the ontext ofover-approximation based prediate abstration.7 AppliationsWe have implemented our approah for the guarded ommand language. Ourimplementation is done in the language Oaml and it uses the Simplify theo-rem prover [8℄. The implementation uses several optimizations for heking onlyneessary queries. When updating �new for re�nement, we add only those on-junts of ��(s0)[ei(x)=x℄ for whih we annot prove validity. Moreover, we ahequeries to ensure that the theorem prover is not alled twie for the same query.We disuss the appliation of our implementation for two onurrent pro-grams: property veri�ation for the Bakery mutual exlusion protool and errordetetion in RAX (Remote Agent Experiment), a omponent extrated from anembedded spaeraft-ontrol appliation.These preliminary experiments show the merits of our approah. Of ourse,muh more experimentation is neessary to really assess the pratial bene�tsof the proposed tehnique and a lot more engineering is required to apply it toreal programming languages. We are urrently doing an implementation in theJava PathFinder (JPF) model heking framework [26℄ for the analysis of Javaprograms. We briey disuss at the end of this setion the use of our approahfor test-ase generation for Java ontainer implementations.10



(Proess 1)p1 = 0 7�! x := y; p1 := 1p1 = 1 7�! x := x+ 1; p1 := 2p1 = 2 ^ x � y 7�! p1 := 3p1 = 3 7�! p1 := 0 (Proess 2)p2 = 0 7�! y := x; p2 := 1p2 = 1 7�! y := y + 1; p2 := 2p2 = 2 ^ y < x 7�! p2 := 3p2 = 3 7�! p2 := 0Fig. 4. Bakery exampleIteration Conrete states Abstrat states New prediates1 17 11 x � y2 18 12 x+ 1 � y; x � y + 1; y � 03 26 19 x+ 2 � y; y � 1; x � 14 44 32 y � 1; x � 0; y � 25 48 36 -Fig. 5. Bakery example: intermediate results of the re�nement algorithmThe Bakery Mutual Exlusion Protool We have analyzed several versionsof the Bakery mutual exlusion protool (for two and more proesses). These ver-sions are in�nite state but they have a �nite bisimulation quotient. The guardedommand representation for a simpli�ed version of the protool is given in Fig. 4.The mutual exlusion property is enoded as \p1 = 3 ^ p2 = 3 is unreah-able". We used our tool to suessfully prove that the property holds. Fig. 5 givesthe intermediate results of the analysis. For eah iteration, we report the numberof generated onrete states, the number of stored abstrat states and the newlygenerated prediates. Note that we never abstrat the program ounter. Thereported results are for the breadth-�rst searh order. For the depth-�rst searhorder the algorithm requires only 4 iterations (see the disussion in Setion 5).The algorithm proeeds in similar way for the full version of the protool.RAX The RAX example (illustrated in Fig. 6) is derived from the software usedwithin the NASA Deep Spae 1 Remote Agent experiment, whih deadlokedduring ight [27℄. We enoded the deadlok hek as \p1 = 4 ^ p2 = 5 ^w1 = 1 ^ w2 = 1 is unreahable". The error is found after one iteration, forbreadth-�rst searh order; the reported ounter-example has 8 steps. For depth-�rst searh order, the algorithm needs one more iteration to �nd the error, usingthe prediates that appear in the guards 1 = e1 and 2 = e2.Note that the state spae of the program is unbounded, as the program keepsinrementing the ounters e1 and e2, when p2 = 2 and p1 = 6, respetively.We also ran our algorithm to see if it onverges to a �nite bisimulation quotient.Interestingly, the algorithm does not terminate for the RAX example, althoughit has a �nite bisimulation quotient. The results are shown in Fig. 7 (breadth-�rst searh order). However, if we assume that the ounters in the program arenon-negative, i.e. we introdue two new prediates, e1 � 0, e2 � 0, then thealgorithm terminates after three iterations.11



(Proess 1)p1 = 1 7�! 1 := 0; p1 := 2p1 = 2 ^ 1 = e1 7�! p1 := 3p1 = 3 7�! w1 := 1; p1 := 4p1 = 4 ^ w1 = 0 7�! p1 := 5p1 = 2 ^ 1 6= e1 7�! p1 := 5p1 = 5 7�! 1 := e1; p1 := 6p1 = 6 7�! e2 := e2 + 1; w2 := 0; p1 := 2
(Proess 2)p2 = 1 7�! 2 := 0; p2 := 2p2 = 2 7�! e1 := e1 + 1; w1 := 0; p2 := 3p2 = 3 ^ 2 = e2 7�! p2 := 4p2 = 4 7�! w2 := 1; p2 := 5p2 = 5 ^ w2 = 0 7�! p2 := 6p2 = 3 ^ 2 6= e2 7�! p2 := 6p2 = 6 7�! 2 := e2; p2 := 2Fig. 6. RAX exampleIteration Conrete states Abstrat states New prediates1 56 35 1 = e1; 2 = e22 68 44 e1 = 0; e2 = 03 100 65 e1 = �1; e2 = �14 100 65 e1 = �2; e2 = �25 100 65 ...Fig. 7. RAX example: intermediate results of the re�nement algorithmThe appliation of over-approximation based prediate abstration to a Javaversion of RAX is desribed in detail in [27℄. In that work, four di�erent pred-iates were used to produe an abstrat model that is bisimilar to the originalprogram. In ontrast, the work presented here allowed more aggressive abstra-tion to reover feasible ounter-examples.In general, we believe that the tehnique presented here is omplementaryto over-approximation abstration methods and it an be used in onjuntionwith suh methods, as an eÆient way of disovering feasible ounter-examples.We view the integration of the two approahes as an interesting topi for futureresearh. Our tehnique explores transitions that are guaranteed to be feasiblein the state spae bounded by the abstration prediates. In ontrast, the over-approximation based methods may also explore transitions that are spuriousand therefore ould require additional re�nement before reporting a real ounter-example. Hene, our tehnique an potentially �nish in fewer iterations and it anuse fewer prediates (whih enable more state spae redution), while retainingthe model heker's apability of �nding real bugs.Testing We have used our preliminary implementation in the JPFmodel hekerto perform test ase generation to ahieve ode overage for Java ontainer lasses(tree-map, linked-list, �bonai-heap). Test ases are sequenes of API alls, i.e.method alls that add and remove elements in a ontainer, to obtain for example,branh overage. The model heker analyzes all sequenes of API alls up to aprede�ned sequene size and generates paths that are witnesses to testing ov-erage riteria enoded as reahability properties. Abstration is used to mathstates between API alls and to avoid the generation of redundant tests.We used an abstration reording the (onrete) shape of the ontainersaugmented with di�erent prediate abstrations on the data �elds from eah12



ontainer element | two states are mathed if they represent ontainers thathave the same shape and valuation for the abstration prediates. The behavioraloverage obtained in this fashion is highly dependent on the di�erent abstra-tions that are used. Therefore we believe that the apability of generating andre�ning the abstrations automatially is ruial for ahieving good overage.Although the work presented here is only a �rst step towards this goal (the JPFimplementation does not yet allow automated re�nement), we obtained betterbehavioral overage than with exhaustive model heking. In fat, for some ofthe examples, exhaustive analysis runs out of memory even before generatingtests that over all the reahable branhes in the ode.8 Conlusions and Future WorkWe presented a novel model heking algorithm based on re�nement of under-approximations, whih e�etively preserves the defet detetion ability of modelheking in the presene of powerful abstrations. The under-approximation isobtained by traversing the onrete transition system and performing the statemathing on abstrat states omputed by prediate abstration. The re�nementis done by heking exatness of abstrations with the use of a theorem prover.We illustrated the appliation of the algorithm for heking safety properties ofonurrent programs and for testing ontainer implementations. In the future,we plan to extend the algorithm to heking liveness properties. We also plan todo an extensive evaluation of our approah on real systems.Referenes1. T. Ball. A theory of prediate-omplete test overage and generation. TehnialReport MSR-TR-2004-28, Mirosoft Researh, 2004.2. T. Ball, A. Podelski, and S. Rajamani. Boolean and artesian abstrations formodel heking C programs. In Pro. Tools and Algorithms for the Construtionand Analysis of Systems (TACAS'01), volume 2031 of LNCS, 2001.3. S. Chaki, E. Clarke, A. Groe, S. Jha, and H. Veith. Modular veri�ation ofsoftware omponents in C. ACM Trans. Computer Systems, 30(6):388{402, 2004.4. S. Chaki, E. Clarke, A. Groe, and O. Strihman. Prediate abstration withminimum prediates. In Pro. 12th CHARME, volume 2860 of LNCS, 2003.5. P. Cousot and R. Cousot. Abstrat interpretation frameworks. Journal of Logiand Computation, 4(2):511{547, August 1992.6. D. Dams and K. S. Namjoshi. The existene of �nite abstrations for branhingtime model heking. In Pro. 19th Symposium on Logi in Computer Siene(LICS'04), 2004.7. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstrations of games:Unertainty, but with preision. In Pro. 19th Symposium on Logi in ComputerSiene (LICS'04), 2004.8. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended stati heking.Researh Report 159, Compaq Systems Researh Center, 1998.9. M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quikly detetingrelevant program invariants. In Pro. 22nd International Conferene on SoftwareEngineering (ICSE'00), 2000. 13
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